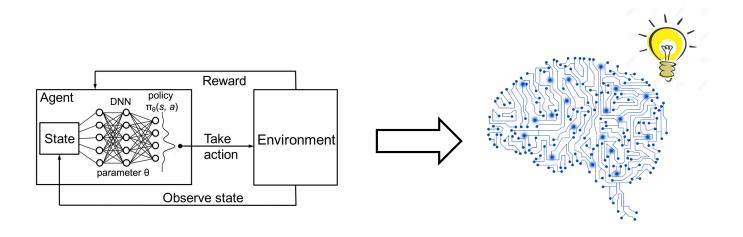
Toward Interpretable Deep Reinforcement Learning with Linear Model U-Trees

Guiliang Liu, Oliver Schulte, Wang Zhu, Qingcan Li Machine Learning Lab,

PROBLEM DEFINITION



Understand the knowledge learned by Deep Reinforcement Learning (DRL) Model

PROBLEM

MOTIVATION

Recent Success of Deep Reinforcement Learning

Game Environment

Physical Environment

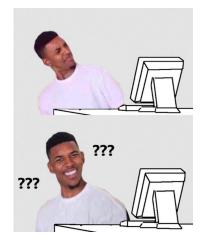
MOTIVATION

MOTIVATION

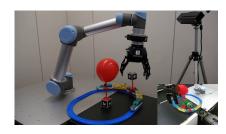
Recent Success of Deep Reinforcement Learning

Game Environment

But



Physical Environment

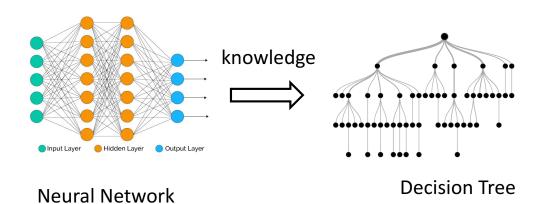


MOTIVATION

MIMIC LEARNING

Interpretable Mimic Learning

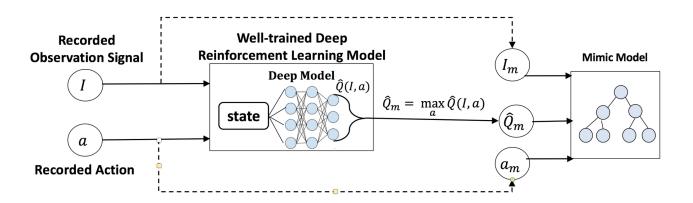
- Transfer the knowledge from deep model to transparent structure (e.g. Decision Tree).
- In the oracle Framework, we train the transparent model with the same input and soft output from neural networks.
- Benefit: accuracy and efficiency



MIMIC LEARNING FOR DRL

Experience Training Setting

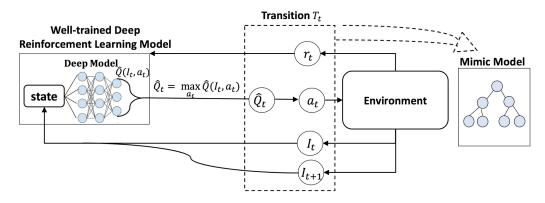
- Recording observation signals I and actions a during DRL training.
- Input them to a mature DRL model, obtain the soft output Q(I,a).
- · Generates data for batch training.



MIMIC LEARNING FOR DRL

Active Play Setting

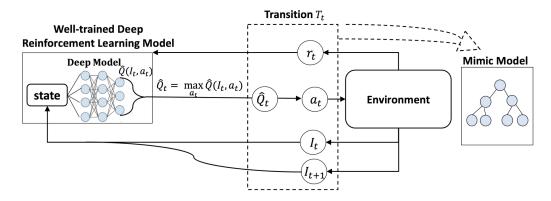
- Applying a mature DRL model to interact with the environment.
- Record a labelled transition $Tt = \langle I_t, a_t, r_t, I_{t+1}, \hat{Q}(I_t, a_t) \rangle$
- Repeat until we have training data for the active learner to finish sufficient updates over mimic model.



MIMIC LEARNING FOR DRL

Active Play Setting

- Applying a mature DRL model to interact with the environment.
- Record a labelled transition $Tt = < I_t, \ a_t, \ r_t, \ I_{t+1}, \ \hat{Q}(I_t, a_t) >$
- Repeat until we have training data for the active learner to finish sufficient updates over mimic model.



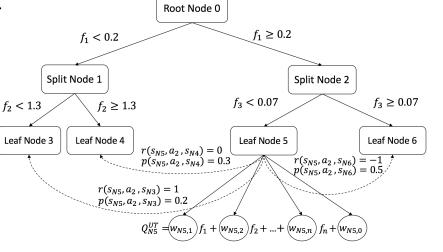
 Compare to experience training setting, active learner does not record data during training process.

Linear Model U Tree (LMUT):

- **U tree** is an online reinforcement learning algorithm with a tree structure representation.
- LMUT allows UT leaf nodes to contain a linear model, rather than simple constants.

Linear Model U Tree (LMUT):

- U tree is an online reinforcement learning algorithm with a tree structure representation.
- LMUT allows UT leaf nodes to contain a linear model, rather than simple constants. $action = a_2$
- Each leaf node of a LMUT defines a partition cell of the input space.
- LMUT builds a Markov
 Decision Process (MDP) (
 from the interaction data between environment and deep model.



Training the Linear Model U Tree (LMUT):

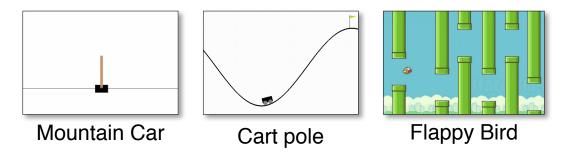
• Data Gathering Phase: it collects transitions ($Tt = < I_t$, a_t , r_t , I_{t+1} , $\hat{Q}(I_t, a_t) >$) on leaf nodes (partition cell) and prepares for fitting linear models and splitting nodes.

Training the Linear Model U Tree (LMUT):

- Data Gathering Phase: it collects transitions ($Tt = < I_t$, a_t , r_t , I_{t+1} , $\hat{Q}(I_t, a_t) >$) on leaf nodes (partition cell) and prepares for fitting linear models and splitting nodes.
- Node Splitting Phase:
 - (1) LMUT scans the leaf nodes and updates their linear model with Stochastic Gradient Descent (SGD).
 - (2) If SGD achieves little improvement, LMUT determines a new split and adds the resulting leaves to the current partition cell.

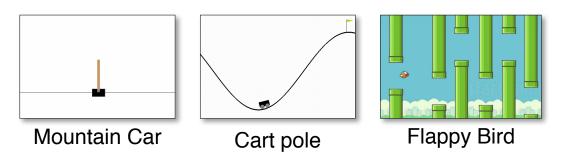
Evaluate the mimic performance of LMUT

Evaluation environments:



Evaluate the mimic performance of LMUT

Evaluation environments:



- Baseline Methods:
 - (1) For the **Experience Training** environment: Classification And Regression Tree (CART), M5-(Regression/Model)Tree.
 - (2) For the **Active Play** environment: Fast Incremental Model Trees (FIMT) and with Adaptive Filters (FIMT-AF).

Fidelity: Regression Performance

 Evaluate how well our LMUT approximates the soft output from Q function in a Deep Q-Network (DQN).

Table 2: Result of Mountain Car

Method		Evaluation Metrics		
		MAE	RMSE	Leaves
	CART	0.284	0.548	1772.4
Expe-	M5-RT	0.265	0.366	779.5
rience	M5-MT	0.183	0.236	240.3
Train-	FIMT	3.766	5.182	4012.2
ing	FIMT-AF	2.760	3.978	3916.9
	LMUT	0.467	0.944	620.7
Active	FIMT	3.735	5.002	1020.8
Play	FIMT-AF	2.312	3.704	712.4
Flay	LMUT	0.475	1.015	453.0

Table 3: Result of Cart Pole

Method		Evaluation Metrics		
		MAE	RMSE	Leaves
	CART	15.973	34.441	55531.4
Expe-	M5-RT	25.744	48.763	614.9
rience	M5-MT	19.062	37.231	155.1
Train-	FIMT	43.454	65.990	6626.1
ing	FIMT-AF	31.777	50.645	4537.6
	LMUT	13.825	27.404	658.2
Active	FIMT	32.744	62.862	2195.0
Play	FIMT-AF	28.981	51.592	1488.9
Play	LMUT	14.230	43.841	416.2

Table 4: Result of Flappy Bird

Method		Evaluation Metrics		
		MAE	RMSE	Leaves
Expe-	CART	0.018	0.036	700.3
1	M5-RT			
Train-	M5-MT	0.016	0.030	412.6
ing	LMUT	0.019	0.043	578.5
Active	LMUT	0.094	0.050	990 O
Play	LIVIUI	0.024	0.000	229.0

(MAE = Mean Absolute Error, RMSE=Root Mean Square Error.)

Fidelity: Regression Performance

 Evaluate how well our LMUT approximates the soft output from Q function in a Deep Q-Network (DQN).

Table 2: Result of Mountain Car

Method		Evaluation Metrics		
101	Method		RMSE	Leaves
	CART	0.284	0.548	1772.4
Expe-	M5-RT	0.265	0.366	779.5
rience	M5-MT	0.183	0.236	240.3
Train-	FIMT	3.766	5.182	4012.2
ing	FIMT-AF	2.760	3.978	3916.9
	LMUT	0.467	0.944	620.7
Active	FIMT	3.735	5.002	1020.8
Play	FIMT-AF	2.312	3.704	712.4
1 lay	LMUT	0.475	1.015	453.0

Table 3: Result of Cart Pole

Method		Evaluation Metrics		
		MAE	RMSE	Leaves
	CART	15.973	34.441	55531.4
Expe-	M5-RT	25.744	48.763	614.9
rience	M5-MT	19.062	37.231	155.1
Train-	FIMT	43.454	65.990	6626.1
ing	FIMT-AF	31.777	50.645	4537.6
	LMUT	13.825	27.404	658.2
Active	FIMT	32.744	62.862	2195.0
Play	FIMT-AF	28.981	51.592	1488.9
riay	LMUT	14.230	43.841	416.2

Table 4: Result of Flappy Bird

Method		Evaluation Metrics		
		MAE	RMSE	Leaves
Expe-	CART	0.018	0.036	700.3
1	M5-RT		0.041	
Train-	M5-MT	0.016	0.030	412.6
ing	LMUT	0.019	0.043	578.5
Active	LMUT	0.094	0.050	990 O
Play	LIVIUI	0.024	0.000	229.0

(MAE = Mean Absolute Error, RMSE=Root Mean Square Error.)

- Compared to online methods, LMUT achieves a better fit to the neural net predictions with a much smaller model tree.
- Cart tree has significantly more leaves.

Matching Game Playing Performance:

 Evaluate by directly playing the games with mimic model computing the Average Reward Per Episode (ARPE).

Matching Game Playing Performance:

- Evaluate by directly playing the games with mimic model computing the Average Reward Per Episode (ARPE).
- LMUT achieves the Game Play Performance ARPE closest to the DQN.

Table 5: Game Playing Performance

Model		Game Environment		
		Mountain Car	Cart Pole	Flappy Bird
Deep Model	DQN	-126.43	175.52	123.42
Basic Model	CUT	-200.00	20.93	78.51
	CART	-157.19	100.52	79.13
	M5-RT	-200.00	65.59	42.14
Experience	M5-MT	-178.72	49.99	78.26
Training	FIMT	-190.41	42.88	N/A
	FIMT-AF	-197.22	37.25	N/A
	LMUT	-154.57	145.80	97.62
Active	FIMT	-189.29	40.54	N/A
Play	FIMT-AF	-196.86	29.05	N/A
Гау	LMUT	-149.91	147.91	103.32

Matching Game Playing Performance:

- Evaluate by directly playing the games with mimic model computing the Average Reward Per Episode (ARPE).
- LMUT achieves the Game Play Performance ARPE closest to the DQN.
- The batch learning models
 have strong fidelity in
 regression, but they do not
 perform as well in game
 playing as the DQN.
- Reasons ...

	Model		Game Environment		
			Mountain Car	Cart Pole	Flappy Bird
	Deep Model	DQN	-126.43	175.52	123.42
	Basic Model	CUT	-200.00	20.93	78.51
		CART	-157.19	100.52	79.13
		M5-RT	-200.00	65.59	42.14
	Experience	M5-MT	-178.72	49.99	78.26
	Training	FIMT	-190.41	42.88	N/A
		FIMT-AF	-197.22	37.25	N/A
		LMUT	-154.57	145.80	97.62
	Active	FIMT	-189.29	40.54	N/A
		FIMT-AF	-196.86	29.05	N/A
	Play	LMUT	-149.91	147.91	103.32

Feature Influence:

- In a LMUT model, feature values are used as splitting thresholds to form partition cells for input signals.
- We evaluate the influence of a splitting feature by the total variance reduction of the Q values it produces.

$$Inf_f^N = (1 + \frac{|w_{Nf}|^2}{\sum_{j=1}^J |w_{Nj}|^2})(var_N - \sum_{c=1}^C \frac{Num_c}{\sum_{i=1}^C Num_i} var_c)$$

Feature Influence:

- In a LMUT model, feature values are used as splitting thresholds to form partition cells for input signals.
- We evaluate the influence of a splitting feature by the total variance reduction of the Q values it produces.

$$Inf_f^N = (1 + \frac{|w_{Nf}|^2}{\sum_{j=1}^{J} |w_{Nj}|^2})(var_N - \sum_{c=1}^{C} \frac{Num_c}{\sum_{i=1}^{C} Num_i} var_c)$$

Table 6: Feature Influence

	Feature	Influence			
Mountain	Velocity	376.86			
Car	Position	171.28			
	Pole Angle	30541.54			
Cart	Cart Velocity	8087.68			
Pole	Cart Position	7171.71			
	Pole Velocity At Tip	2953.73			

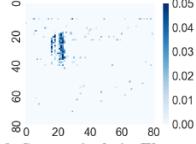
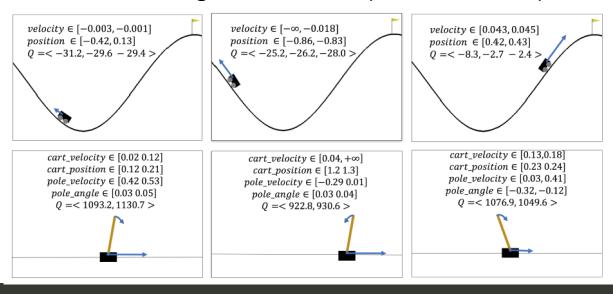


Fig. 6: Super pixels in Flappy Bird

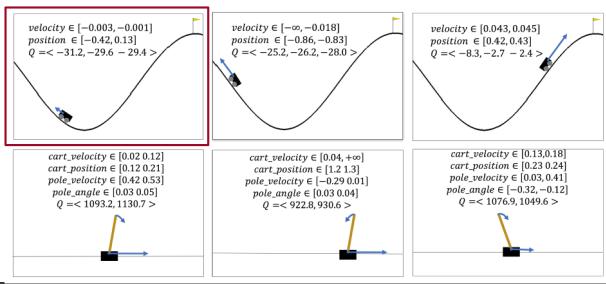
Rule Extraction (case study):

- The rules are presented in the form of partition cells (constructed by the splitting features in LMUT).
- Each cell describes a games situation (similar Q values) to be analyze.



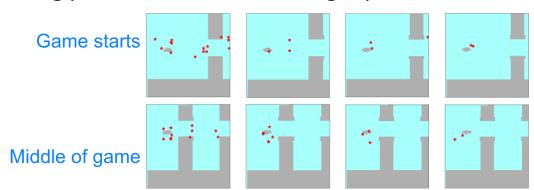
Rule Extraction (case study):

- The rules are presented in the form of partition cells (constructed by the splitting features in LMUT).
- Each cell describes a games situation (similar Q values) to be analyze.



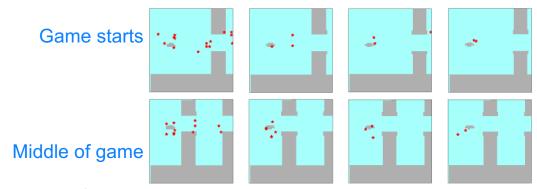
Super-pixel Explanation:

- Deep models with image input can be explained by super-pixels.
- We highlight the pixels that have feature influence > 0.008 along the splitting path from root to the target partition cell.



Super-pixel Explanation:

- Deep models with image input can be explained by super-pixels.
- We highlight the pixels that have feature influence > 0.008 along the splitting path from root to the target partition cell.



• We find 1) most splits are made on the first image 2) the first image is often used to locate the pipes and the bird, while the remaining images provide further information about the bird's velocity.

SUMMARY

- 1. We extends interpretable mimic learning to Reinforcement Learning.
 - Experience Training setting
 - Active Play setting
- 2. We invent a novel model tree Linear Model U-tree to mimic a DRL model.
- 3. We show how to interpret a DRL model by analyzing the knowledge stored in the tree structure of LMUT.
 - Feature Importance
 - Rule extraction
 - Super Pixel Explanations

Summary

THANK YOU!

For more information:

Poster: #246

My homepage: http://www.galenliu.com/