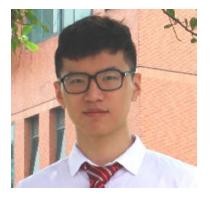
Deep Soccer Analytics: Learning An Action-value Function For Evaluating Soccer Players



Guiliang Liu

Yudong Luo

o Oliver Schulte

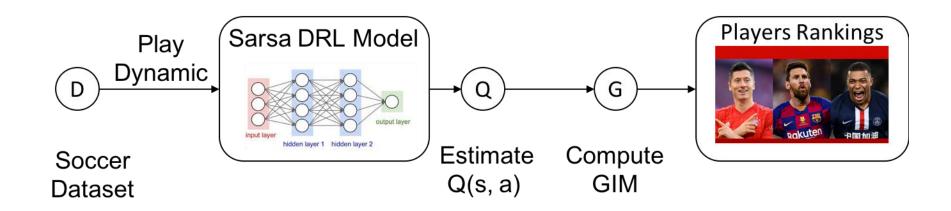
Tarak Kharrat

ECML-PKDD 2020 Presentation

Overview

Learning an Action-Value Q Function for soccer player evaluation:

- Modeling *play dynamics* based on a Markov Game Process (s,a,r).
- Build a *Deep Reinforcement Learning* (DRL) model to compute action-value Q function.
- Compute a *Game Impact Metric (GIM)*.
- *Rank player* and evaluate their performance.
- *Examine* the model with a Multi-League play-by-play dataset.



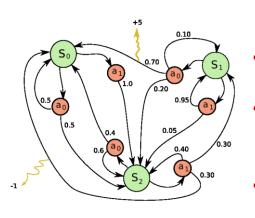
Overview

Motivation

Why Deep Reinforcement Learning (DRL):

Previous Model-based methods [1,2,3]:

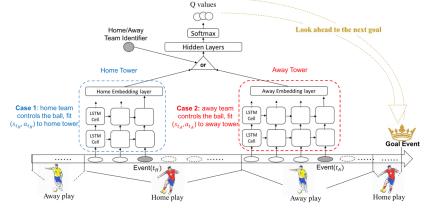
- Explicitly construct a Markov Model.
- Model building and function learning are *independent*.
- Infeasible for large dataset.



- Requires discretizing the continuous features.
- Huge state numbers (e.g., 10 features each with 10 dimension indicates 10^{10} states).
- Complex transitions.

Our Sarsa DRL model:

- Model-Free RL (no pre-built models).
- An end-to-end model (no data preprocessing, no intermediate model).
- Generalize to large dataset (mini-batch gradient descent fits dataset with any size).



Routley, Kurt, and Oliver Schulte. "A Markov Game model for valuing player actions in ice hockey." Proceedings of the Thirty-First Conference on Uncertainty in Artificial Intelligence. 2015.
 Schulte, Oliver, et al. "A Markov Game model for valuing actions, locations, and team performance in ice hockey." Data Mining and Knowledge Discovery 31.6 (2017): 1735-1757.
 Cervone D, D'Amour A, Bornn L, Goldsberry K (2016) A multiresolution stochastic process model for predicting basketball possession outcomes. J Am Stat Assoc 111(514):585–599

Motivation

Preliminary Result

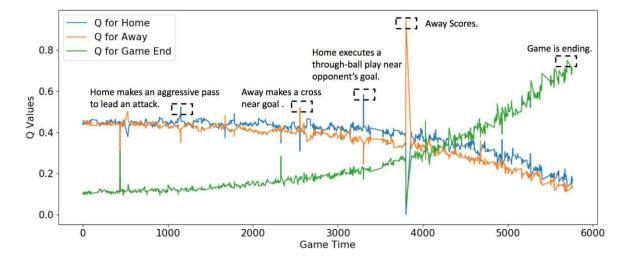
Visualizing the Q functions learned by DRL:

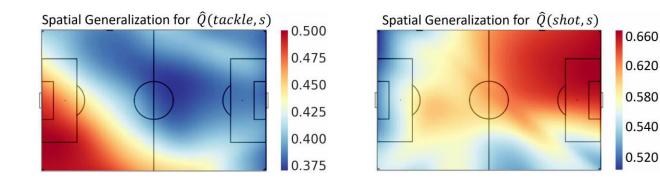
Temporal Projection

- Q values for a game between Fulham (Home) and Sheffield Wednesday (Away), which has happened on Aug. 19th, 2017.
- Q functions represents the probability of home/away team score the next goal or nobody score.

Spatial Projection

- Q functions for actions: shots and tackles.
- Q function (learned by DRL) generalizes from observed states and actions to those that have not occurred.





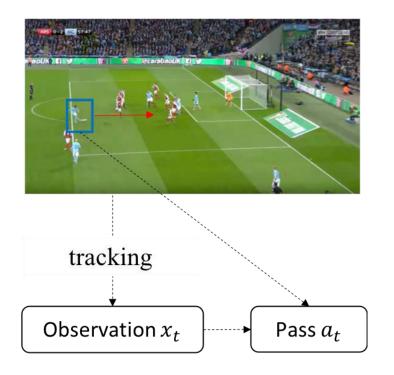
Preliminary Result

THANK YOU!

Dataset and Preprocessing

A play-by-play soccer *dataset* for sports analytic

- Records the actions of on-the-ball players and the *spatial* and the *temporal* context features.
- *Multiple leagues*, multiple teams and players.



N	D ()	104		
Name	Туре	Range	Dataset	F24
Game Time Remaining	Continuous	[0, 100]	Events	4,679,354
X Coordinate of ball	Continuous	[0, 100]	Players	5,510
Y Coordinate of ball	Continuous	[0, 100]	Games	2,976
Manpower Situation	Discrete	[-5, 5]	Teams	164
Goal Differential	Discrete	$(-\infty, +\infty)$	Leagues	10
Action	Discrete	one-hot representation	Season	2017-18
Action Outcome	Discrete	{success, failure}	Place	Europe
Velocity of ball	Continuous	$(-\infty, +\infty)$		
Event Duration	Continuous	$[0, +\infty)$	Table 3: I	Dataset statis-
Angle between ball and goal	Continuous	$[-\pi, +\pi]$		sic unit of this
Home or Away Team	Discrete	{Home, Away}		ent, which de-

Table 2: Complete feature list. For the feature manpower situation, negative values indicate short-handed, positive values indicate power play.

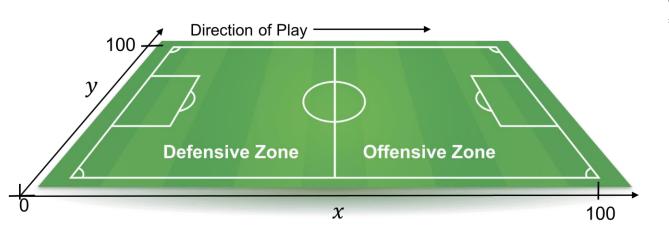
scribes the game context and the on-the-ball action of a player at a time step.

Dataset and Preprocessing

Dataset and Preprocessing

The dataset utilizes adjusted spatial coordinates

- Both the X-coordinates and Y-coordinates are adjusted to [0, +100].
- We reverse the coordinates when the team in possession attacks towards the left
- The play flows from left to right for either team on the adjusted soccer pitch.



F=Fail, H=	F=Fail, H=Home, A=Away, T=Team who performs action, GTR = Game Time Remain, ED = Event Duration										
GTR	Х	Y	MP	GD	Action	OC	Velocity	ED	Angle	Т	Reward
35m44s	87	26	Even	1	simple pass	S	(2.2, 1.7)	11.0	0.19	Η	[0,0,0]
35m42s	90	17	Even	1	standard shot	F	(1.5, -4.5)	2.0	0.11	Η	[0,0,0]
35m42s	99	44	Even	1	save	S	(0, 0)	0.0	0.06	Α	[0,0,0]
35m9s	100	1	Even	1	cross	S	(0.0, -1.3)	33.0	0.0	Н	[0,0,0]
35m7s	85	56	Even	1	simple pass	S	(-7.3, 27.6)	2.0	0.39	Η	[0,0,0]
35m5s	92	67	Even	1	simple pass	S	(3.6, 5.4)	2.0	0.28	Η	[0,0,0]
35m4s	97	50	Even	1	corner shot	S	(5.1, -16.2)	1.0	1.74	Η	[0,0,0]
35m4s	100	50	Even	1	goal	S	(0, 0)	0.0	0.0	Н	[1,0,0]
										•	
3m41s	62	96	Even	2	long ball	F	(4.5, 9.3)	9.0	0.08	Α	[0,0,0]
3m39s	19	89	Even	2	clearance	S	(-21.5, -3.2)	2.0	0.07	Н	[0,0,0]
3m35s	24	100	Even	2	throw in	S	(1.3, 2.7)	4.0	0.09	Α	[0,0,0]
3m33s	27	96	Even	2	simple pass	S	(1.1, -2.2)	2.0	0.1	Α	[0,0,0]
3m31s	12	95	Even	2	cross	S	(-7.5, -0.5)	2.0	0.07	Α	[0,0,0]
3m28s	6	46	Even	2	simple pass	S	(-1.7, -16.3)	3.0	0.79	Α	[0,0,0]
3m26s	14	48	Even	2	standard shot	S	(3.8, 1.3)	2.0	0.44	Α	[0,0,0]
3m26s	0	50	Even	2	goal	S	(0, 0)	0.0	0.0	Α	[0,1,0]

MP=Manpower GD=Goal Difference OC = Outcome S=Succeed

Table 1: A data sample featuring team scoring: a sequence of events where home team scores and then away team scores. The rewards [1,0,0] and [0,1,0] indicate the scoring event of home team and away team respectively (see Section 4.1). We skip some events in the middle due to space issues.

Dataset and Preprocessing

Play Dynamic in Soccer

A Markov model for soccer games.

- Two agents: Home and Away
- An action a_t (one-hot representation) denotes the movements of players who control the ball.
- An **observation** is a feature vector x_t specifying a value of the features.
- A game **state** records the complete sequence $s_t \triangleq (x_t, a_{t-1}, x_{t-1}, ..., x_0)$.
- The **reward** r_t is a vector of goal values g_t that specifies which team (Home, Away) scores.

An action-value Q function.

- Divide a soccer game into **goal-scoring episodes**. 1) **starts** at the beginning of the game, or immediately after a goal, and 2) **terminates** with a goal or at the end of the game.
- The **next-goal Q-function** represents the probability that the home resp. away team scores the goal at the end of the current goal-scoring episode.

$$Q_{team}(s,a) = P(goal_{team} = 1 | s_t = s, a_t = a)$$

Model Structure

Two-Tower Dynamic Play LSTM (TTDP-LSTM)

- Three output nodes at each time step: \hat{Q}_{home} , \hat{Q}_{away} , and \hat{Q}_{end} .
- *Two towers*: fits home and away data separately.
- **Dynamic possession-LSTM**: 1) apply a dynamic trace length. 2) trace back to the beginning of a play.
- Temporal Difference (TD) Loss:

$$\mathcal{L}(\theta) = \sum_{team \in T} \mathbb{E}\left[(r_{team,t+1} + \hat{Q}_{team}(s_{t+1}, a_{t+1}) - \hat{Q}_{team}(s_t, a_t))^2 \right]$$

- Training settings:
 - 1) Stacked (a tow layer) LSTM
 - 2) Minibatch training.
 - 3) max trace length is 10.



Model Structure

Model Validation: Q Values

Illustration of Temporal and Spatial Projection:

Go back to slide 4

Calibration Quality for the learned Q-function:

- Evaluate how well our learned Q-function fits the observed scoring frequencies.
- Discretized game context:
 - 1) Manpower (Short Handed (SH), Even Strength (ES), Power Play (PP)).
 - 2) Goal Differential (\geq -3, -2, -1, 0, 1, 2, \geq 3).
 - 3) Period (1 (first half), 2 (second half)).
- Measures (how close they are):
- 1) Empirical Scoring Probabilities $Q_{team}^{obs}(A) = \frac{1}{|A|} \sum_{s \in A} goal_{team}^{obs}(s)$
- 2) Estimated Scoring Probabilities $\hat{Q}_{team}(A) = \frac{1}{|A|} \sum_{s \in A} \hat{Q}_{team}(s, a)$

Man.	Goal.	P.	A	TT_Home	TT_Away	TT_MAE	Markov_MAE
ES	-1	1	73176	0.4374	0.4159	0.0052	0.1879
ES	-1	2	96408	0.3496	0.3025	0.0782	0.1783
ES	0	1	356597	0.4437	0.4272	0.026	0.1908
ES	0	2	160080	0.356	0.3077	0.0814	0.1792
ES	1	1	88726	0.4402	0.4128	0.0335	0.1899
ES	1	2	119901	0.3459	0.295	0.077	0.1787
PP	-1	1	876	0.4366	0.4045	0.1752	0.1937
PP	-1	2	3319	0.352	0.2911	0.0668	0.1685
PP	0	1	3183	0.4414	0.403	0.1308	0.187
PP	0	2	7183	0.3579	0.2855	0.0841	0.1804
PP	1	1	1316	0.4391	0.3949	0.115	0.1825
PP	1	2	7676	0.356	0.2862	0.1121	0.1792

Table 4: Calibration Results. TT_Home and TT_Away report the average scoring probability $\hat{Q}_{team}(A)$ estimated by our TTDP-LSTM model. Here we compare only Q values for pass and shot as they are frequent and well-studied actions. TT_MAE is the Mean Absolute Error (MAE) between estimated scoring probabilities from our model and empirical scoring probabilities. For comparison, we also report a Markov_MAE which applies the estimates from a discrete-state Markov model [Schulte et al., 2017b].

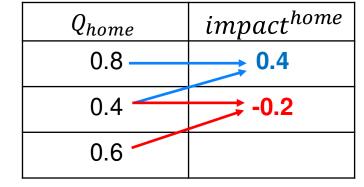
Model Validation: Q Values

Player Evaluation Metric

Goal Impact Metric (GIM):

- Compute the impact of an action by
 - 1) How much it changes the expected total reward of a player's team.
 - 2) Or the difference in expected total reward before and after the player acts.
- GIM calculates the total impact of a player's action:

$$impact^{team}(s, a, s', a') \equiv Q_{team}(s', a') - \mathbb{E}_{s', a'}[Q_{team}(s', a')|s, a]$$
$$GIM^{i}(D) \equiv \sum_{s, a, s', a'} n[s, a, s', a', pl' = i; D] \cdot impact^{team}(s, a, s', a')$$



Q Value Above Average Replacement (QAAR):

• The QAAR metric compares 1) the expected total future reward given that player i acts next, to 2) the expected total future reward given that a random replacement player acts next:

$$\mathbb{E}_{s',a'}[Q_{team}(s',a')|s,a]\Big)$$

• *Proposition*: For each player i recorded in our play-by-play dataset D, $QAAR^{i}(D) = GIM^{i}(D)$:

Player Evaluation Metric

Mimic Decision Tree

Understanding Impact Values with Mimic Decision Tree:

- Target: Understand why some actions have large impacts under certain game contexts.
- Method: Mimic Decision Tree.
 - 1) Feed states and actions into a CART to fit the impact values via supervised learning.
 - 2) Compute the *feature importance* with the learned tree.
- Some results (Top 10 important features for shot and pass):

Feature	Influence	Feature	Influence	Outcome(t)<1;	Outcome(t)<1;
X distance (t)	0.6632	X Velocity (t)	0.1355	Impact: 1.09E-2	Impact: -5.00E-4
outcome (t)	0.2275	Distance to Goal(t)	0.1264		
Y distance (t)	0.0469	Game Time Remain (t-1)	0.1082	X Coordinate(t-1)<79.15; X Distance (t)<48.15;	Time Remain(t-1)<39.45; Outcome (t-1)<1;
Game Time Remain (t)	0.0242	Game Time Remain (t)	0.0816	Impact: -2.27E-2 Impact: 9.78E-2	Impact: 4.38E-3
duration (t)	0.0062	Outcome (t)	0.0773		
X Coordinate (t-1)	0.0059	Outcome (t-1)	0.0760	X Velocity (t) Distance to Y Distance (t) Game Time	X Distance (t-1) Distance to Distance to X Velocity
Game Time Remain (t-1)	0.0035	Distance to Goal (t-1)	0.0411	<252.64; Goal (t)<=20.19; <=0.05; Remain (t)<48.82;	<37.53; Goal (t)<=28.47; Goal (t)<=31.60; (t)<=0.12;
interrupted (t)	0.0035	Angle (t)	0.0373	Impact:-1.34E-2 Impact: -3.37E-2 Impact: 3.64E-1 Impact: -1.65E-2	Impact: -2.18E-2 Impact: -1.64E-3 Impact: 4.81E-3 Impact: -4.62E-4
X velocity (t)	0.0030	Angle (t-1)	0.0298	Fig. () Bernarian trac for the impact of that	Eis 7. Bernarian tare for the impact of some
outcome (t-1)	0.0019	X Velocity (t-1)	0.0174	Fig. 6: Regression tree for the impact of shot.	Fig. 7: Regression tree for the impact of pass.

Table 5: Feature influence for the impact of shot.

Table 6: Feature influence for the impact of pass.

Some findings:

- Shot impact significantly increases as a player approaches the goal.
- Passing impact increases with game velocity.

Mimic Decision Tree

Player Ranking: Case Study

Fine-Tuning:

- Motivation: Different leagues have their competition level, season length, and playoff agenda.
- Approaches: (EFL Championship games)
 - 1) Train a general model to evaluate actions in European soccer.
 - 2) Fine-tune the weight values from the general model to a league specific model.

All-Actions Assessment: GIM Goals Assists name team Matej Vydra Derby 18.017 21 4 Sheffield United Leon Clarke 17.785 19 5 16.045 12 0 Lewis Grabban Sunderland 15.976 7 Bobby De Cordova-Reid Bristol 19 5 Diogo José Teixeira da Silva Wolverhampton 15.707 17 5 Tom Cairney Fulham 5 15.24 Wolverhampton 14.979 9 12 Ivan Cavaleiro 13.565 8 8 Stefan Johansen Fulham James Maddison Norwich 13.23 14 8 3 Gary Hooper Sheffield Wednesday 11.953 10

Table 7: 2017-2018 season top-10 Player Impact Scores for players in EFL Championship game season.

• *Matej Vydra tops* our 2017-2018 season ranking.

Action-Specific Assessment:

Top shot play	/ers		 Top passing players 			
name	GIM	Goal	name	GIM	Assist	
Matej Vydra	4.747	21	Leon Clarke	8.05	5	
Leon Clarke	4.024	19	Matej Vydra	5.957	4	
Lewis Grabban	3.775	12	Bobby De Cordova-Reid	5.134	7	
Kouassi Ryan Sessegnon	3.657	15	Chris Wood	4.732	1	
Harry Wilson	3.135	7	Gary Hooper	4.694	3	
Famara Diedhiou	3.015	13	Ivan Cavaleiro	4.533	12	
Sean Maguire	2.5	10	Diogo José Teixeira da Silva	4.283	5	
Joe Garner	2.44	10	Gary Madine	4.202	2	
Jarrod Bowen	2.408	14	Tom Cairney	4.123	5	
Callum Paterson	2.29	10	Conor Hourihane	4.042	2	

Table 8: Top-10 players with largest shot impact in 2017-2018 EFL Championship game season.

Table 9: Top-10 players with largest pass impact in 2017-2018 EFL Championship game season.

- Top shot players lead the goal scoring.
- Top passing players may not have leading assists.

Player Ranking: Empirical Evaluation

Comparison Player Evaluation Metrics:

Goal-based Metrics :

- 1) Plus-Minus (**PM**): measures how much the presence of a player influences the goals of his team.
- 2) Expected Goal (**XG**): weights each shot by its chance of leading to a goal.

All-Action Metrics:

- 1) Valuing Actions by Estimating Probabilities (VAEP) applies the difference of action values to compute the impact of on-the-ball actions.
- 2) Scoring Impact (SI): based on a Markov model with pre-discretized spatial and temporal features.
- 3) **M-GIM**: merges our home/away towers and fits all the states and actions with a single-layer network.

Correlations with Standard Success Measures (all players) :

Methods	Goals	Assists	SpG	PS%	KeyP	Yel	Red
PM	0.284	0.318	0.199	0.288	0.218	0.001	-0.069
VAEP	0.093	0.290	0.121	-0.111	0.116	0.024	0.133
XG	0.422	0.173	0.328	0.164	0.278	0.534	0.034
SI	0.585	0.153	0.438	-0.140	0.052	0.114	-0.089
M-GIM	0.648	0.367	0.573	0.153	0.417	-0.110	-0.145
GIM	0.844	0.498	0.596	0.16	0.562	-0.181	-0.137

- GIM achieves *promising correlation* with most success measures.
- Our model correctly recognizes that a penalty reduces the scoring probability, influencing the overall player GIM.

Player Ranking

Player Ranking: Empirical Evaluation

Correlations with Standard Success Measures (EFL Championship players):

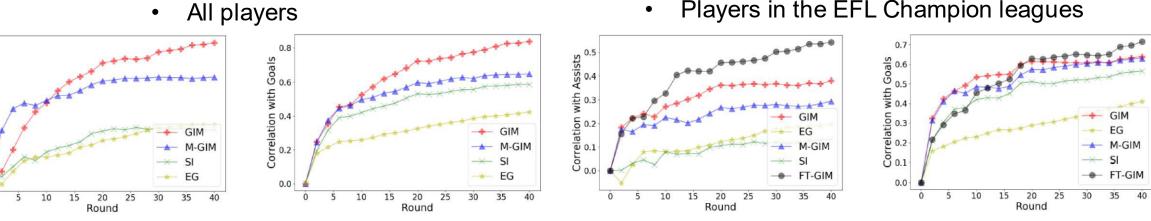
Methods	Goals	Assists	SpG	PS%	KeyP	Yel	Red
PM	0.262	0.223	0.122	0.155	0.112	0.033	-0.046
VAEP	0.08	0.26	0.116	-0.126	0.137	-0.015	0.215
XG	0.420	0.165	0.394	0.149	0.254	0.578	-0.021
SI	0.574	0.124	0.408	-0.144	0.054	0.084	-0.147
M-GIM	0.629	0.309	0.551	0.171	0.388	-0.039	-0.132
GIM	0.638	0.382	0.553	-0.053	0.468	-0.026	-0.105
FT-GIM	0.736	0.585	0.569	0.082	0.592	<u>-0.110</u>	-0.171

0.5

Correlation with Assists

- Championship League players' correlations generally decrease.
- it is more severe for our GIM metric.
- Fine-tuning (FT-GIM) addresses this issue.

Round-by-Round Correlations: Predicting Future From Past Performance :



Player Ranking

Players in the EFL Champion leagues

Conclusion

Key takeaways :

- Q function from Sarsa Temporal Difference (TD) Learning:
 - 1. Neural function approximator fits well with the high dimensional Spatial-temporal data.
 - 2. TD method provides a promising evaluation to action-state.

Action Impact :

- 1. Cancel influence from previous action and focus only on current actions.
- 2. Effectively evaluate the influence of agent's action

Domain knowledge:

- 1. Home/away team behaves differently.
- 2. Players in different soccer league should be evaluated separately.
- 3. Action impact correlates well with standard success measures (e.g., goal, shot, etc.,)

Conclusion