Learning Object-Oriented Dynamics for Planning from Text

Guiliang Liu, Ashutosh Adhikari, Amir Farahmand, Pascal Poupart University of Waterloo, University of Toronto & Vector Institute ICLR 2022 Presentation

Introduction

Texting-Based Games

Introduction

Model-base RL

Learning Object-Oriented **Dynamics** for **Planning** from Text

Dynamics: transition function p(s'|s, a) and reward function r(s, a).

- Difficult \rightarrow in high-dim space, open ignored by model-free RL.
- Important \rightarrow generalization ability, sample efficiency

Planning: algorithms like MCTS, Dyna-Q.

• Robust and well-perform

Introduction

Factorized states capturing only the object information

Learning Object-Oriented Dynamics for Planning from Text

Why object information ?

- a) Modelling the all the language information is too complex.
- b) In a sentence, only objects and their relations matters for a task.
- c) Object-oriented information bottleneck (Tishby et al., 2000)

Object-Oriented Partially Observable Markov Decision Process

OO-POMDP is a tuple $< S, O, Z, \Phi, G, A, R, T, \gamma >$, where:

• S and O: **low-level** states and observations from the TGB.

You open the copy of "cooking: a modern approach (3rd ed.)" and start reading: recipe # 1 ------ gather all following **ingredients** and follow the directions to prepare this tasty **meal**. ingredients: **banana**, block of **cheese**, **carrot** directions: **dice** the **banana**, **fry** the **banana**, **chop** the block of **cheese**, **roast** the block of **cheese**, **slice** the **carrot**, **fry** the **carrot**, and prepare **meal**.

$$[o_0 \longrightarrow \dots \longrightarrow o_{t-2} \longrightarrow o_{t-1} \longrightarrow o_t] \implies s_t$$

Presented at SDS, CUHK, 2022. Homepage http://guiliang.me/

Object-Oriented Partially Observable Markov Decision Process

OO-POMDP is a tuple $< S, O, Z, \Phi, G, A, R, T, \gamma >$, where:

• S and O: **low-level** states and observations from the TGB.

You open the copy of "cooking: a modern approach (3rd ed.)" and start reading: recipe # 1 ------ gather all following **ingredients** and follow the directions to prepare this tasty **meal**. ingredients: **banana**, block of **cheese**, **carrot** directions: **dice** the **banana**, **fry** the **banana**, **chop** the block of **cheese**, **roast** the block of **cheese**, **slice** the **carrot**, **fry** the **carrot**, and prepare **meal**.

$$[o_0 \longrightarrow \dots \longrightarrow o_{t-2} \longrightarrow o_{t-1} \longrightarrow o_t] \implies s_t$$

• \mathcal{Z} and Φ : **object-level** states and observations.

Presented at SDS, CUHK, 2022. Homepage http://guiliang.me/

Object-Oriented Transition Model

ComplEx Graph Decoder (Motivation: graph as a structured information bottleneck):

- Map $\mathbf{z}_{t-1} = [z_{1,t-1}, \dots, z_{K,t-1}]$ (states of K objects) to a graph \mathbf{h}_{t-1} .
- Apply a ComplEx scoring (Trouillon et al., 2016) function for link prediction.
- Approximate matrix prediction with low-rank decomposition:

 $h_{t-1} = [Re(\boldsymbol{Z}_{t-1}\boldsymbol{W}_{1}\boldsymbol{Z}_{t-1}^{T}), \dots, Re(\boldsymbol{Z}_{t-1}\boldsymbol{W}_{C}\boldsymbol{Z}_{t-1}^{T})] \qquad \boldsymbol{Z}_{t} \in \mathbb{R}^{K \times E} \qquad W_{c} \in \mathbb{C}^{E \times E}$

Object-Oriented Transition Model

Independent Transition Layers (lots of objects, action affect only several objects):

• (BIDAF) (Seo et al., 2017) detected affected actions.

$$\boldsymbol{\nu}_{k,t-1}^{a} = \sum_{j} b_{k,j}^{a} \psi^{a}(a_{j,t-1}) \quad \text{where} \quad \boldsymbol{b}_{k}^{a} = softmax(\boldsymbol{B}_{k,:}^{ae}) \in [0,1]^{J},$$
$$\boldsymbol{\nu}_{t-1}^{e} = \sum_{k} b_{k}^{e} \boldsymbol{e}_{k,t-1} \quad \text{where} \quad \boldsymbol{b}^{e} = softmax(\max_{col}(\boldsymbol{B}^{ae})) \in [0,1]^{K},$$

 $v_{k,t-1}^{\alpha}$ is the attended action vector, v_{t-1}^{e} is the attended object representation.

Object-Oriented Transition Model

Independent Transition Layers (lots of objects, action affect only several objects):

 A group of independent transition layers to predict the belief of objects states (inspired by the Independent Causal Mechanism (IRM) (Pearl, 2009)).

$$p_{\mathcal{T}}^k(z_{k,t}|\boldsymbol{a}_{t-1}, \boldsymbol{z}_{t-1}) = \mathcal{N}(\boldsymbol{\mu}_{k,t}, \boldsymbol{\sigma}_{k,t}) \quad \text{where} \quad [\boldsymbol{\mu}_{k,t}, \boldsymbol{\sigma}_{k,t}] = \psi_k^p([\boldsymbol{\nu}_{k,t-1}^a, \boldsymbol{\nu}_{t-1}^e, \boldsymbol{e}_{k,t-1}])$$

Controlling Performance with Planning

Experiment Setting:

- Text-World benchmark.
- 100/20/20 training /validation/testing games.
- Difficulty level 0-5.

Level	Recipe Size	#Locations	Max Scores	ores Need Cut		Need Coo	k #Acti	#Action Candidates		#Objects	
0	1	1 1		×		X		10.5		15.4	
1	1	1	4	\checkmark		×		11.5		17.1	
2	1	1	5	\checkmark		\checkmark		11.8		17.5	
3	1	1 9		×		×		7.2		34.1	
4	3	6	11	\checkmark		\checkmark		28.4		33.4	
5		Mixture of Levels[1,2,3,4}									
Тур	be	Model		0	1	2	3	4	5	1	
		DQN		90.0	62.5	32.0	38.3	17.7	34.6	0	
		DRQN		95.0	58.8	31.0	36.7	21.4	27.4	-0.8	
Mod	lel-	DRQN+		95.0	58.8	33.0	33.3	19.5	30.6	-0.8	
Fre	e	KG-A2C		96.7	55.5	31.0	54.3	26.8	30.1	+3.2	
Algor	ithm	GATA-GTP		95.0	62.5	32.0	51.7	21.8	23.5	+1.9	
_		GATA-OG		100	66.2	36.0	58.3	14.1	45.0	+7.4	
	GATA-COC		C 9	96.7	62.5	33.0	46.7	25.9	33.4	+3.9	
		OOTD learned by the Object-Supervised (OS) ELBo Objective									
Model Basec Plannin		OS-Dyna-Q		100	62.5	42.0	58.3	21.8	48.2	+9.6	
	1-1	OS-MCTS		95.0	77.5	56.0	63.3	24.9	42.9	+14.1	
	$\begin{bmatrix} \text{lel} \\ \text{ad} \end{bmatrix} = 0$	S-Dyna-Q + MCTS		95.0	78.8	57.0	71.7	27.7	38.1	+15.5	
		OOTD learned by the Self-Supervised (SS) ELBo Objective									
	ning	SS-Dyna-Q		100	62.5	48.0	53.3	30.5	47.0	+11.0	
		SS-MCTS		100	70.0	51.0	70.0	27.3	54.4	+16.3	
	S	SS-Dyna-Q + MCTS		100	81.3	56.9	75.0	31.4	58.4	+21.3	

Sample Efficiency

Figure 3: Training Curves: Agents' normalized scores for the games at different difficulty levels. The plot shows $mean \pm std$ normalized scores computed with three independent runs.

Question and Answering (Q&A)

