Benchmarking Constraint Inference in Inverse Reinforcement Learning

Guiliang Liu¹²³, Yudong Luo²³, Ashish Gaurav²³, Kasra Rezaee⁴, Pascal Poupart²³. ¹The Chinese University of Hong Kong, Shenzhen ²University of Waterloo, ³Vector Institute, & ⁴Huawei Presented at ICLR 2023

VECTOR INSTITUTE

Introduction

Reinforcement Learning (RL)

- Optimize the control policy in the environment.
- E.g., general RL tasks (e.g., Go, Atari, Mujoco).
- What if having constraints?

Introduction

Constrained Reinforcement Learning (CRL)

- Optimize the control policy under a set of constraints. •
- E.g., Safe Reinforcement Learning (e.g., Auto-driving).
- What if constraint not known?

Introduction

Inverse Constrained Reinforcement Learning (ICRL)

• Policy Optimization + Constrain Inference.

Benchmarks

Demonstration Dataset:

- Add predefine constraints to the environment to construct a Constrained MDP (CMDP).
- Trained expert agent with Proximal Policy Optimization Lagrange (PPO-Lag) algorithm.
- Generate the expert dataset with the expert agent.

Baseline methods:

- Binary Classifier Constraint Learning (BC2L).
- Generative Adversarial Constraint Learning (GACL).
- Maximum Entropy Constraint Learning (MECL).
- Variational Inverse Constrained Reinforcement Learning (VICRL).

Environment Settings:

- Based on the MuJoCo Game engine.
- Incorporating predefined constraints into the environment.

Туре	Name	Dynamics	Obs. Dim.	Act. Dim.	Constraints
Virtual	Blocked Half-cheetah	Deterministic	18	6	X-Coordinate \geq -3
	Blocked Ant	Deterministic	113	8	X-Coordinate \geq -3
	Biased Pendulumn	Deterministic	4	1	X-Coordinate \geq -0.015
	Blocked Walker	Deterministic	18	6	X-Coordinate \geq -3
	Blocked Swimmer	Deterministic	10	2	X-Coordinate ≤ 0.5

Table 1: The virtual and realistic environments in our benchmark.

How well do the algorithms perform in the virtual environment?

How well do the algorithms perform **when the expert demonstrations may violate the true underlying constraint?**

How well do ICRL algorithms perform in stochastic environments?

Realistic Environment

Environment Settings:

- Based on the common road game engine.
- Incorporating predefined constraints into the environment.

Table 3: The constraints for realistic environments.

Туре	Name	Dynamics	Obs. Dim.	Act. Dim.	Constraints
Realistic	HighD Velocity Constraint	Stochastic	76	2	Car Velocity ≤ 40 m/s
	HighD Distance Constraint	Stochastic	76	2	Car Distance $\geq 20 \text{ m}$

Realistic Environment

How well do the algorithms perform in the realistic environment?

Realistic Environment

How well do ICRL algorithms work in terms of recovering multiple constraints?

Question and Answering (Q&A)

