Learning Agent Representations for Ice Hockey

Guiliang Liu (Presenter), Oliver Schulte, Pascal Poupart, Mike Rudd, and Mehrsan Javan.

Embed Player Information

• **Definition:** Modeling the special characteristics of individual players (Learning Agent Representation).

Embed Player Information

- **Definition:** Modeling the special characteristics of individual players (Learning Agent Representation).
- **Motivation**: e.g., Expected Goal (XG) Prediction.

Embed Player Information

• **Definition:** Modeling the special characteristics of individual players (Learning Agent Representation).

Embed Player Information

• **Definition:** Modeling the special characteristics of individual players (Learning Agent Representation).

- Challenges:
 - 1) Large agent number (>1k).
 - 2) Sparse and diverse player observations.

Embed Player Information

- **Definition:** Modeling the special characteristics of individual players (Learning Agent Representation).
- Motivation: e.g., Expected Goal (XG) Prediction. Identity pl_t State s_t Action a_t Constant of the state of t

Player Representation via Generation

 Contextualized representation: Apply latent variables z_t as a representation of game context:

$$p(pl_t|\mathbf{s}_t, \mathbf{a}_t, \mathbf{r}_t) = \int p(pl_t|\mathbf{z}_t) p(\mathbf{z}_t|\mathbf{s}_t, \mathbf{a}_t, \mathbf{r}_t) d\mathbf{z}_t$$

to Learn a *context-aware prior* $p(\mathbf{z}_t | \mathbf{s}_t, \mathbf{a}_t, \mathbf{r}_t)$.

- Challenges:
 - 1) Large agent number (>1k).
 - 2) Sparse and diverse player observations.

Embed Player Information

- **Definition:** Modeling the special characteristics of individual players (Learning Agent Representation).
- Motivation: e.g., Expected Goal (XG) Prediction. Identity pl_t State s_t Action a_t $dtion a_t$ $dtion a_t$ $dtion a_t$
- Challenges:
 - 1) Large agent number (>1k).
 - 2) Sparse and diverse player observations.

Player Representation via Generation

Contextualized representation: Apply latent
variables z_t as a representation of game context:

$$p(pl_t|\mathbf{s}_t, \mathbf{a}_t, \mathbf{r}_t) = \int p(pl_t|\mathbf{z}_t) p(\mathbf{z}_t|\mathbf{s}_t, \mathbf{a}_t, \mathbf{r}_t) d\mathbf{z}_t$$

to Learn a *context-aware prior* $p(\mathbf{z}_t | \mathbf{s}_t, \mathbf{a}_t, \mathbf{r}_t)$.

• After observing the acting player pl_t , we learn an approximate posterior $q(\mathbf{z}_t | \mathbf{s}_t, \mathbf{a}_t, \mathbf{r}_t, pl_t)$ as a contextualized player representation:

$$p(pl_t|\mathbf{s}_t, \mathbf{a}_t, \mathbf{r}_t) \approx \int p(pl_t|\mathbf{z}_t)q(\mathbf{z}_t|\mathbf{s}_t, \mathbf{a}_t, \mathbf{r}_t, pl_t) \mathrm{d}\mathbf{z}_t$$

Model Structure

Variational Recurrent Ladder Agent Encoder (VaRLEA)

- Build a *contextualized* Ladder VAE at RNN cell
 - 1. Ladder latent variables $(z_{s,t}, z_{a,t}, z_{r,t})$ for maintaining the *causal dependency* $s \rightarrow a \rightarrow r$.
 - **2. Generation**: Estimate *contextualized prior*.
 - **3.** Inference: Derive the player representation.

Model Structure

Variational Recurrent Ladder Agent Encoder (VaRLEA)

- Build a *contextualized* Ladder VAE at RNN cell
 - 1. Ladder latent variables $(z_{s,t}, z_{a,t}, z_{r,t})$ for maintaining the *causal dependency* $s \rightarrow a \rightarrow r$.
 - **2.** Generation: Estimate *contextualized prior*.
 - **3.** Inference: Derive the player representation.

- Shrinkage Effect:
 - Allow information to transfer between Player observations.
 - 2. Shrinkage estimator prevents overfitting

Conclusion

The take-home message:

- The VAE ELBo loss is an effective *shrinkage estimator* for large multi-agent action datasets with
 - **1**. Diversity (many different agents).
 - 2. Sparsity (some agents with limited observations).
- Modeling player information with player representation improves the performance of downstream applications.

