Learning Tree Interpretation from Object Representation for Deep Reinforcement Learning

Neurips 2021 Presentation

Introduction

Problem Definition:

Target: Learning Tree Interpretation for DRL Agents in complex environments.

Introduction

Problem Definition:

Target: Learning Tree Interpretation for DRL Agents in complex environments.

Difficulties & Challenges:

High-dimensional input space.

H = 49,152(128 * 128 * 3)

Complex Tree Model

Complex Decision Rules

Introduction

Problem Definition:

Target: Learning Tree Interpretation for DRL Agents in complex environments.

Difficulties & Challenges:

High-dimensional input space.

H = 49,152(128 * 128 * 3)

Complex Tree Model

Complex Decision Rules

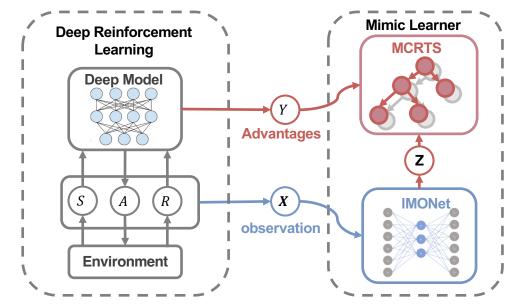
Represent And Mimic Framework (RAMi):

IMONet: Interpretable representation model.

• Learning a disentangled representation.

MCRTS: Interpretable decision model.

• Learning a mimic tree.



- The **Information Bottleneck (IB)** objectives for Representing and Mimicking:
- The IB objective: $\max_{\omega} \left[I_{\omega} (\Phi Y) \lambda I_{\omega} (\Phi, X) \right]$

Mimic Tree Mimic Targets Input Signals

The **Information Bottleneck (IB)** objectives for Representing and Mimicking:

• The IB objective: $\max_{\omega} \left[I_{\omega} (\Phi Y) - \lambda I_{\omega} (\Phi, X) \right]$

Mimic Tree Mimic Targets Input Signals

• Learn a latent object representation for X.

 $q(\boldsymbol{\phi}|\boldsymbol{x}_n) = \int q(\boldsymbol{\phi}|\boldsymbol{z})q(\boldsymbol{z}|\boldsymbol{x}_n)\mathrm{d}\boldsymbol{z}$

The **Information Bottleneck (IB)** objectives for Representing and Mimicking:

• The IB objective: $\max_{\boldsymbol{\omega}} \left[I_{\boldsymbol{\omega}} (\Phi Y) - \lambda I_{\boldsymbol{\omega}} (\Phi, X) \right]$

Mimic Tree Mimic Targets Input Signals

- Learn a latent object representation for X. $q(\phi|\mathbf{x}_n) = \int q(\phi|\mathbf{z})q(\mathbf{z}|\mathbf{x}_n)d\mathbf{z}$
- Computing the IB objective is impractical, so
 - Approximate p(x, y) with the empirical distribution $1/N \sum_{n=1}^{N} \delta_{y_n}(y) \delta_{x_n}(x)$.
 - Apply the deep variational method for IB [30].

^[30] Alexander A. Alemi, Ian Fischer, Joshua V. Dillon, and Kevin Murphy. Deep variational information bottleneck. In 5th International Conference on Learning Representations, ICLR 2017.

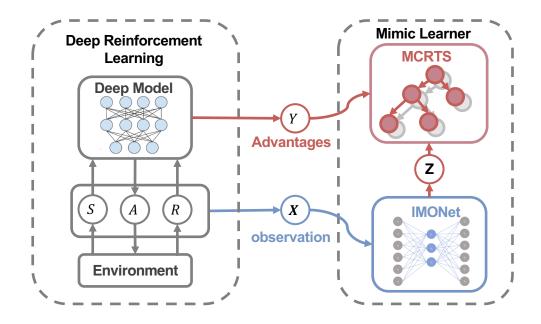
The **Information Bottleneck (IB)** objectives for Representing and Mimicking:

- The IB objective: $\max_{\omega} \left[I_{\omega}(\Phi | Y) \lambda I_{\omega}(\Phi, X) \right]$ Mimic Tree Mimic Targets Input Signals
- Learn a latent object representation for X. $q(\boldsymbol{\phi}|\boldsymbol{x}_n) = \int q(\boldsymbol{\phi}|\boldsymbol{z})q(\boldsymbol{z}|\boldsymbol{x}_n)d\boldsymbol{z}$
- Computing the IB objective is impractical, so
 - Approximate p(x, y) with the empirical distribution $1/N \sum_{n=1}^{N} \delta_{y_n}(y) \delta_{x_n}(x)$.
 - Apply the deep variational method for IB [30].

• The lower bound of IB objective is:

$$\frac{1}{N} \sum_{n=1}^{N} \left\{ \mathbb{E}_{q(\boldsymbol{z}|\boldsymbol{x}_{n})} [\log p(\boldsymbol{x}_{n}|\boldsymbol{z})] - \lambda \mathcal{D}_{KL}[q(\boldsymbol{z}|\boldsymbol{x}_{n}) \| p_{0}(\boldsymbol{z})] - \mathbb{E}_{q(\boldsymbol{z}|\boldsymbol{x}_{n})} \left[\mathbb{E}_{q(\boldsymbol{\phi}|\boldsymbol{z})} \left(\mathcal{L}_{q}(y_{n}) + \lambda \mathcal{L}_{p}(\boldsymbol{\phi}) \right) - \lambda H[q(\boldsymbol{\phi}|\boldsymbol{z})] \right] \right\}$$

= *ELBo objective* + *IB-MDL objective* + *Entropy Regularizer*



^[30] Alexander A. Alemi, Ian Fischer, Joshua V. Dillon, and Kevin Murphy. Deep variational information bottleneck. In 5th International Conference on Learning Representations, ICLR 2017.

Learning Object Representation

Identifiable Multi-Objects Network (IMONet):

Motivation 1: Learning a disentangled representation.

 $p(Z) = \prod_{d=1}^{D} p(Z_d)$ (Following the VAE framework.)

Learning Object Representation

Identifiable Multi-Objects Network (IMONet):

Motivation 1: Learning a disentangled representation.

 $p(Z) = \prod_{d=1}^{D} p(Z_d)$ (Following the VAE framework.)

Motivation 2: Learning an identifiable representation.

- Unidentifiable \rightarrow different factorizations for the same inputs.
- Identifiable VAE (IVAE) [33] \rightarrow conditionally factored prior.

 $p(Z|A,R) = \prod_d p(Z_d|A,R)$

• $Z_{d,k}$ captures an independent factor of object variations

[33] Ilyes Khemakhem, Diederik P. Kingma, Ricardo Pio Monti, and Aapo Hyvärinen. Variational autoencoders and nonlinear ICA: A unifying framework. AISTATS 2020.

Learning Object Representation

Identifiable Multi-Objects Network (IMONet): Motivation 1: Learning a disentangled representation. $p(Z) = \prod_{d=1}^{D} p(Z_d)$ (Following the VAE framework.)

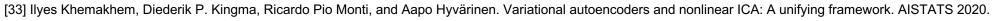
Motivation 2: Learning an identifiable representation.

- Unidentifiable \rightarrow different factorizations for the same inputs.
- Identifiable VAE (IVAE) [33] \rightarrow conditionally factored prior.

 $p(Z|A,R) = \prod_d p(Z_d|A,R)$

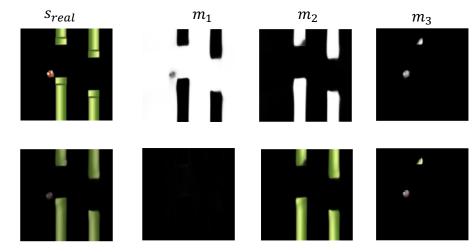
Motivation 3: Learning an interpretable representation.

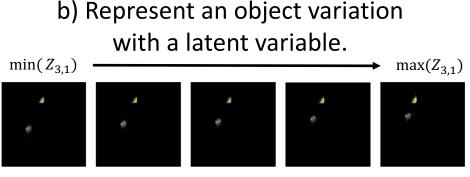
- IMonet (follows Monet [34])learns a symbolic abstraction of state space by representing object variations.
- $Z_{d,k}$ captures an independent factor of object variations



[34] Christopher P. Burgess, et,al. Monet: Unsupervised scene decomposition and representation. CoRR, abs/1901.11390, 2019.

a) Decomposes a state into objects.





Inferring Mimic Trees with IB-MDL

 $\mathbb{E}_{q(\boldsymbol{\phi}|\boldsymbol{z})}\left(\mathcal{L}_q(y_n) + \lambda \mathcal{L}_p(\boldsymbol{\phi})\right) - \lambda H[q(\boldsymbol{\phi}|\boldsymbol{z})]\right)$

Inferring Mimic Trees with IB-MDL

 $\mathbb{E}_{q(\boldsymbol{\phi}|\boldsymbol{z})}\left(\mathcal{L}_q(y_n) + \lambda \mathcal{L}_p(\boldsymbol{\phi})\right) - \lambda H[q(\boldsymbol{\phi}|\boldsymbol{z})]$

Minimize $\mathcal{L}_p(\phi)$: the description length of encoding the tree structure.

• Convert the binary tree structure to a string [42].

Proposition 1 *Given a regression tree with L splits, the total cost (in bits) of describing the tree structure with the string encoding method is:*

$$\mathcal{L}_p(\phi) = \log \frac{(2L-1)^2}{L^{\frac{3}{2}}(L-1)^{\frac{1}{2}}} + (2L-1)H(\frac{L}{2L-1}) + O(L^{-1})$$
(5)

[42] J. Ross Quinlan and Ronald L. Rivest. Inferring decision trees using the minimum description length principle. Information and Computation, 80(3):227–248, 1989.

Inferring Mimic Trees with IB-MDL

 $\mathbb{E}_{q(\boldsymbol{\phi}|\boldsymbol{z})}\left(\mathcal{L}_q(y_n) + \lambda \mathcal{L}_p(\boldsymbol{\phi})\right) - \lambda H[q(\boldsymbol{\phi}|\boldsymbol{z})]$

Minimize $\mathcal{L}_p(\phi)$: the description length of encoding the tree structure.

• Convert the binary tree structure to a string [42].

Proposition 1 *Given a regression tree with L splits, the total cost (in bits) of describing the tree structure with the string encoding method is:*

$$\mathcal{L}_{p}(\phi) = \log \frac{(2L-1)^{2}}{L^{\frac{3}{2}}(L-1)^{\frac{1}{2}}} + (2L-1)H(\frac{L}{2L-1}) + O(L^{-1})$$
(5)

Minimize $\mathcal{L}_q(y_n)$: the description length of encoding the exceptions.

- Model the leaf prediction with a Gaussian distribution.
- Apply the log-variance as the cost of encoding exceptions

[42] J. Ross Quinlan and Ronald L. Rivest. Inferring decision trees using the minimum description length principle. Information and Computation, 80(3):227–248, 1989.

Inferring Mimic Trees with IB-MDL

 $\mathbb{E}_{q(\boldsymbol{\phi}|\boldsymbol{z})}\left(\mathcal{L}_{q}(y_{n}) + \lambda\mathcal{L}_{p}(\boldsymbol{\phi})\right) - \lambda H[q(\boldsymbol{\phi}|\boldsymbol{z})]\right]$

Minimize $\mathcal{L}_p(\phi)$: the description length of encoding the tree structure.

• Convert the binary tree structure to a string [42].

Proposition 1 *Given a regression tree with L splits, the total cost (in bits) of describing the tree structure with the string encoding method is:*

$$\mathcal{L}_p(\phi) = \log \frac{(2L-1)^2}{L^{\frac{3}{2}}(L-1)^{\frac{1}{2}}} + (2L-1)H(\frac{L}{2L-1}) + O(L^{-1})$$
(5)

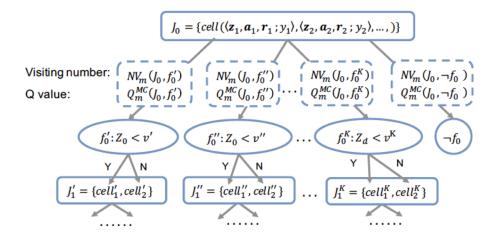
Minimize $\mathcal{L}_q(y_n)$: the description length of encoding the exceptions.

- Model the leaf prediction with a Gaussian distribution.
- Apply the log-variance as the cost of encoding exceptions

Monte-Carlo Regression Tree Search (MCRTS)

- Learns a distribution of mimic trees based on the latent features from the object representation.
- The reward is defined by:

$$r^{MC}(J_{leaf}) = -\mathcal{L}_q(y_n) - \lambda \mathcal{L}_p(\phi)$$



[42] J. Ross Quinlan and Ronald L. Rivest. Inferring decision trees using the minimum description length principle. Information and Computation, 80(3):227–248, 1989.

Empirical Evaluation

Environments:

2) Space Invaders

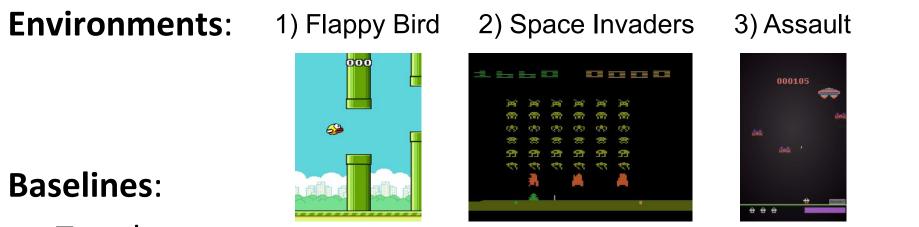
1) Flappy Bird

000

6

3) Assault

Empirical Evaluation



- Tree learners:
 - a) CART: Classification And Regression Tree.
 - b) VIPER: Q-dagger based imitation learner.
 - c) M5-RT/MT: learn the regression tree or the model tree based on M5 algorithm
 - d) GM/VR-LMT: Linear Model Tree based on Variance Reduction (VR) and Gaussian Mixture (GM) for feature selection.
- Representation Learners:
 - a) Classic VAE

Fidelity versus Simplicity

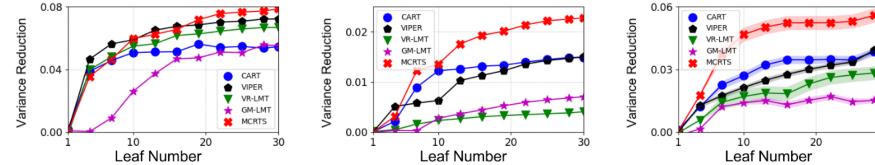
Matrica		- Flappy Bird			Space Invaders			Assault		
Metrics:	Method	VR	VR-PL	Leaf	VR	VR-PL	Leaf	VR	VR-PL	Leaf
	Cart	8.51E-2	8.43E-5	1007	4.96E-2	7.02E-5	705	4.79E-2	7.46E-5	642
• Fidelity: Variance	VIPER	8.57E-2	1.88E-4	453	4.63E-2	8.80E-5	525	5.28E-2	8.09E-5	653
Huchty , variance	M5-RT	9.59E-2	8.37E-5	1144	4.54E-2	2.92E-5	1558	4.37E-2	2.73E-5	1605
P_{A}	M5-MT	9.56E-2	1.55E-4	612^{w_+}	1.60E-2	1.23E-5	1303^{w_+}	3.42E-2	2.54E-5	1351^{w_+}
Reduction (VR)	GM-LMT	8.99E-2	2.99E-4	303^{w_+}	2.07E-2	8.32E-5	249^{w_+}	5.55E-2	1.83E-4	$307 \ ^{w_+}$
	VR-LMT	8.46E-2	5.36E-4	157^{w_+}	2.65E-2	1.61E-4	166^{w_+}	5.80E-2	1.98E-4	291 $^{w_+}$
• Simplicity: Leaf Numbers.	$\overline{VAE}+\overline{CART}$	7.25E-2	-3.44Ē-4	212	-3.99Ē-2 -	7.86E-5	507 -	5.15E-2	- 1.16Ē-4 -	- 448
Simplicity. Lear Numbers.	VAE+VIPER	7.63E-2	5.32E-4	143	4.12E-2	9.89E-5	417	4.57E-2	1.29E-4	356
	VAE+GM-LMT	6.35E-2	3.51E-4	$180^{w_{+}}$	3.39E-2	2.75E-4	123^{w_+}	4.20E-2	1.44E-5	293^{w_+}
Fidelity v.s., Simplicity: VR	VAE+VR-LMT	7.95E-2	5.12E-4	154^{w_+}	3.52E-2	2.08E-4	171^{w_+}	5.10E-2	1.99E-4	258^{w_+}
	VAE+MCRTS	7.83E-2	1.27E-3	61	4.82E-2	5.66E-4	85	6.58E-2	7.75E-4	85
Per-Leaf (VR-PL)	- ĪMONet+CĀRT -	- <u>8.2</u> 3 <u>Ē</u> -2	$-4.02\overline{E}-\overline{4}$	204	5.21Ē-2 -	1.38Ē-4	375 -	5.67E-2	- 1.81Ē-4 -	- 315
	IMONet+VIPER	8.50E-2	4.48E-4	191	5.26E-2	1.69E-4	313	6.05E-2	1.90E-4	319
	IMONet+GM-LMT	7.87E-2	3.74E-4	212^{w_+}	4.79E-2	3.23E-4	149^{w_+}	5.45E-2	2.15E-4	256^{w_+}
	IMONet+VR-LMT	8.21E-2	7.16E-4	115^{w_+}	4.54E-2	3.79E-4	$120^{w_{+}}$	6.03E-2	2.27E-4	$268^{w_{+}}$
	IMONet+MCRTS	8.53E-2	1.37E-3	62	5.37E-2	7.08E-4	76	7.53E-2	9.07E-4	83

Fidelity versus Simplicity

Metrics:		Flappy Bird			Space Invaders			Assault		
	Method	VR	VR-PL	Leaf	VR	VR-PL	Leaf	VR	VR-PL	Leaf
	Cart	8.51E-2	8.43E-5	1007	4.96E-2	7.02E-5	705	4.79E-2	7.46E-5	642
 Fidelity: Variance 	VIPER	8.57E-2	1.88E-4	453	4.63E-2	8.80E-5	525	5.28E-2	8.09E-5	653
ridency. Variance	M5-RT	9.59E-2	8.37E-5	1144	4.54E-2	2.92E-5	1558	4.37E-2	2.73E-5	1605
\mathbf{P} adjustion (\mathbf{V}/\mathbf{P})	M5-MT	9.56E-2	1.55E-4	612^{w_+}	1.60E-2	1.23E-5	1303^{w_+}	3.42E-2	2.54E-5	1351^{w_+}
Reduction (VR)	GM-LMT	8.99E-2	2.99E-4	303^{w_+}	2.07E-2	8.32E-5	249^{w_+}	5.55E-2	1.83E-4	$307 \ ^{w_+}$
	VR-LMT	8.46E-2	5.36E-4	157^{w_+}	2.65E-2	1.61E-4	166^{w_+}	5.80E-2	1.98E-4	291 $^{w_+}$
• Simplicity: Leaf Numbers.	VĀĒ+CĀRT	7.25E-2	-3.44E-4	212	-3.99E-2	7.86E-5	507 -	5.15E-2	- 1.16Ē-4 -	- 448
Simplicity. Lear Numbers.	VAE+VIPER	7.63E-2	5.32E-4	143	4.12E-2	9.89E-5	417	4.57E-2	1.29E-4	356
	VAE+GM-LMT	6.35E-2	3.51E-4	$180^{w_{+}}$	3.39E-2	2.75E-4	$123^{w_{+}}$	4.20E-2	1.44E-5	$293^{w_{+}}$
 Fidelity v.s., Simplicity: VR 	VAE+VR-LMT	7.95E-2	5.12E-4	154^{w_+}	3.52E-2	2.08E-4	171^{w_+}	5.10E-2	1.99E-4	258^{w_+}
	VAE+MCRTS	7.83E-2	1.27E-3	61	4.82E-2	5.66E-4	85	6.58E-2	7.75E-4	85
Per-Leaf (VR-PL)	ĪMONet+CĀRT	⁻ 8.23Ē-2 ⁻	4.02Ē-4	204	-5.21E-2	1.38Ē-4	375	$\overline{5.67E-2}$	-1.81Ē-4	- 315
	IMONet+VIPER	8.50E-2	4.48E-4	191	5.26E-2	1.69E-4	313	6.05E-2	1.90E-4	319
	IMONet+GM-LMT	7.87E-2	3.74E-4	212^{w_+}	4.79E-2	3.23E-4	149^{w_+}	5.45E-2	2.15E-4	256^{w_+}
	IMONet+VR-LMT	8.21E-2	7.16E-4	115^{w_+}	4.54E-2	3.79E-4	120^{w_+}	6.03E-2	2.27E-4	268^{w_+}
	IMONet+MCRTS	8.53E-2	1.37E-3	62	5.37E-2	7.08E-4	76	7.53E-2	9.07E-4	83

Leaf-by-Leaf Regression

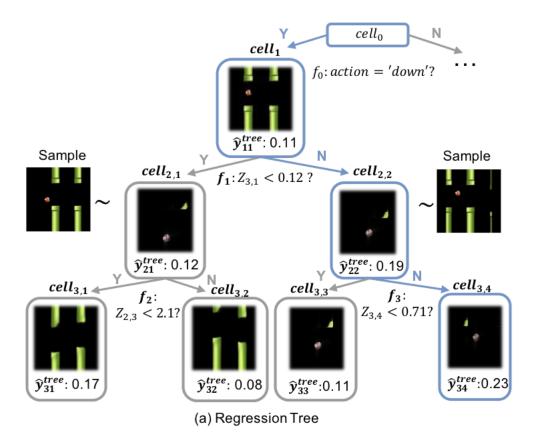
Performance :



30

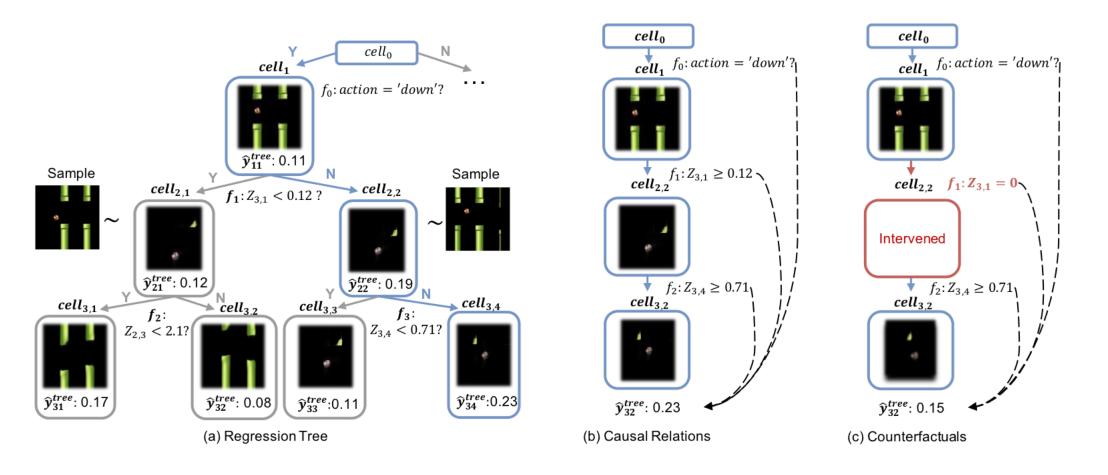
Illustrative Examples of Interpretable Mimic Trees

Illustrating the extracted rules :



Illustrative Examples of Interpretable Mimic Trees

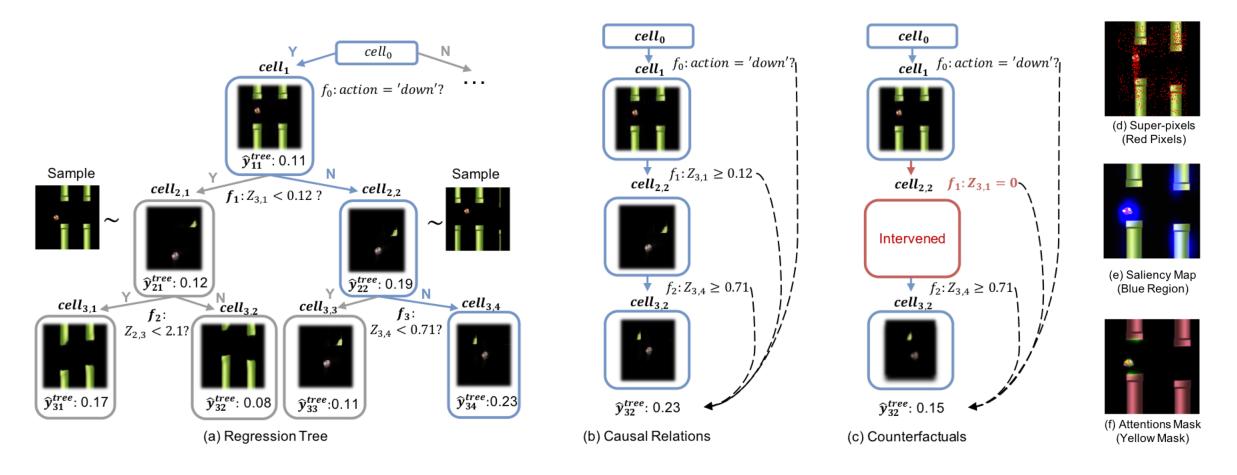
Illustrating the extracted rules :



Neurips 2021 Presentation

Illustrative Examples of Interpretable Mimic Trees

Illustrating the extracted rules :



Conclusion

The take-home message:

- Divide the interpretation into a representation model and a decision model.
- The Information Bottleneck (IB) principle provides an effective approach for compressing input and extracting target-relevant representation.

Neurips 2021 Presentation