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Complex Decision Rules

Represent And Mimic Framework (RAMi):
IMONet: Interpretable representation model.
• Learning a disentangled representation.
MCRTS: Interpretable decision model.
• Learning a mimic tree.
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• Computing the IB objective is impractical, so
• Approximate " #, % with the empirical

distribution .
• Apply the deep variational method for IB [30].
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Learning Object Representation
Identifiable Multi-Objects Network (IMONet):
Motivation 1: Learning a disentangled representation.
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Motivation 1: Learning a disentangled representation.

Motivation 2: Learning an identifiable representation.
• Unidentifiable → different factorizations for the same inputs.
• Identifiable VAE (IVAE) [33] → conditionally factored prior.

• "#,% captures an independent factor of object variations
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Learning Object Representation
Identifiable Multi-Objects Network (IMONet):
Motivation 1: Learning a disentangled representation.

Motivation 2: Learning an identifiable representation.
• Unidentifiable → different factorizations for the same inputs.
• Identifiable VAE (IVAE) [33] → conditionally factored prior.

Motivation 3: Learning an interpretable representation.
• IMonet (follows Monet [34])learns a symbolic abstraction of state 

space by representing object variations.

• "#,% captures an independent factor of object variations
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(Following the VAE framework.)

[33] Ilyes Khemakhem, Diederik P. Kingma, Ricardo Pio Monti, and Aapo Hyvärinen. Variational autoencoders and nonlinear ICA: A unifying framework. AISTATS 2020.

[34] Christopher P. Burgess, et,al. Monet: Unsupervised scene decomposition and representation. CoRR, abs/1901.11390, 2019.
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a) Decomposes a state into objects.

b) Represent an object variation
with a latent variable.
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Learning Mimic Tree Interpretations
Inferring Mimic Trees with IB-MDL 
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Learning Mimic Tree Interpretations
Inferring Mimic Trees with IB-MDL 

Minimize !" # : the description length of encoding 
the tree structure.
• Convert the binary tree structure to a string [42].
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Monte-Carlo Regression Tree
Search (MCRTS)
• Learns a distribution of mimic trees based 

on the latent features from the object 
representation.

• The reward is defined by:
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Empirical Evaluation
Environments: 1) Flappy Bird 2) Space Invaders 3) Assault
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Empirical Evaluation
Environments:

Baselines:
• Tree learners:

a) CART: Classification And Regression Tree.
b) VIPER: Q-dagger based imitation learner.
c) M5-RT/MT: learn the regression tree or the model tree based on M5 algorithm
d) GM/VR-LMT: Linear Model Tree based on Variance Reduction (VR) and Gaussian 

Mixture (GM) for feature selection. 

• Representation Learners:
a) Classic VAE

1) Flappy Bird 2) Space Invaders 3) Assault
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Metrics:
• Fidelity: Variance

Reduction (VR)
• Simplicity: Leaf Numbers.
• Fidelity v.s., Simplicity: VR

Per-Leaf (VR-PL)

Fidelity versus Simplicity
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Metrics:
• Fidelity: Variance

Reduction (VR)
• Simplicity: Leaf Numbers.
• Fidelity v.s., Simplicity: VR

Per-Leaf (VR-PL)

Leaf-by-Leaf Regression 
Performance :

Fidelity versus Simplicity
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Illustrative Examples of Interpretable Mimic Trees
Illustrating the extracted rules：
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Conclusion
The take-home message:
• Divide the interpretation into a representation model and a decision model.
• The Information Bottleneck (IB) principle provides an effective approach for

compressing input and extracting target-relevant representation.
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