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Problem Definition

Player Evaluation:
« Definition: Evaluate the contribution of players by quantifying their action impacts.

« Challenges:

1) Previous methods are expectation-based, which cannot differentiate the risk-seeking
actions from the risk-averse ones.

2) How to distinguish these actions and assign proper credits to the players remains a
fundamental challenge in sports analytics.

« Our solution: Risk-Sensitive Player Evaluation with Post-hoc Calibration
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Example: The predicted distribution of future goals for the shots made at positions (a to d).

« Risk-Sensitive Evaluation: Distributions (a) and (b) have the same expectation, but the
first shot has a larger risk-averse estimate and a smaller risk-seeking estimate.

« Post-hoc Calibration: shot made at the position (d) is rare in an ice hockey game, and
thus this event is likely to be OoD, leading to a biased prediction.

42.5

E)
N
3

-100

0

100

%

—

v

Density

Density

(a)

7!
6l
5

4

3|
2]
14
6.

12|
10|

8
6
41
2
8

2 04 06 08

Values

(c)

S o o o ©&
N H [e)] o] = ]
Aysus aAne|INwNg

o
<)

¢ S © o =
N H (o)} [o¢] [ = ]
Ausuaq aAneinWINg

S

j0.0

2

0.4 0.6 0.8
Values

N
5

N
(=}

1.5

Density

1.0

0.5

982 04 06 08

(b)

0.37 077 |

Values

(d)

Density
> 2 N w s v

Neurips 2022 Presentation



Uncertainty-Aware Reinforcement Learning

Estimate the aleatoric and epistemic uncertainty for a risk-sensitive player evaluation.

« Distributional RL for Aleatoric Uncertainty
1) Learn the distribution of Z, (s¢, a;), i.e., number of (;;——t— “Quanties )
or S agents

goals when a player performs action a; in state s;. Home
Trace back to the @ Away
beginning of a play. M

2) Represent Zy(s¢, a;) by a uniform mixture of N ﬁ.lstm _______

supporting quantiles. i
5 1 (6y; estimates ook Ao o the

Zi(st,ar) = Nz 08y,i(se.ar) the ith quantile) (Ot 2 at z) (Ot 1 0-y) (0 a) nextgoal.

R Y M — -

Goal Event

3) Distributional Bellman Operator
TTZ (s, ar) £ Ri(se, ag) + ¥ Zr(Ser1, Are1)

Where s¢1.1~Pr(Se+1lse, ar) and agp1~m(Ae411Se+1)
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Uncertainty-Aware Reinforcement Learning

Estimate the aleatoric and epistemic uncertainty for a risk-sensitive player evaluation.

« Density Estimator for Epistemic Uncertainty
Feature Space Conditional Normalizing Flow (FS-CNF) s Quanties
or S agents

1) Feature Extractor. Trace back to the " »MX&Z?

To prevent feature collapse, the extractor is subjected beginning of a play. .
to a bi-Lipschitz constraint: Istm
G T A | \
| Billzr — 221 Z:||f9($1) - f9($2)||FLZ Ballz1 — za|1 :
e e e o e e N e e e e e e —
________ I ~k gt he
Lower bound ensures  (0t-2 ac-2)  (0p-1,ac-1)  (0r @) | " hext a
Upper bound ensures e iE m\ / /ﬂ\ / Jﬁ\\'\ extgoal |
smoothness SENSIUVILY 10 diStance /oo [/ | N || [N ay ) e |
'\ Goal Event /

2) Density Estimator.

Based on the extracted features, FS-CNF utilizes the
Masked Auto-regressive Flow (MAF).
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Player Evaluation

* Risk-sensitive Impact Metric
To understand how players respond to risk, we propose a Risk-sensitive Game Impact Metric (RiGIM )

~ A

RZGIMI(C) = Z n(s,a,l) X ¢k(3, a, C) Where ¢k (St-l-l’ at—}—la C) = [Z}(c:(st—i-la at+1) - Zl(é(sta a't)]]Ip(-|zE)Zc
(s,a)eD’

« Case Study: Player Ranking in Testing Games
We rank players according to their RiGIM scores in the NHL testing games.

Table 1: Top 10 players with confidence 0.2. Table 2: Top 10 players with confidence 0.8.

Player Name Positon Team P A G RiGIM Player Name Positon Team P A G RiGIM
Jonathan Toews C CHI 10 5 5 1472 Radek Faksa C DAL 6 3 3 2.74
Anze Kopitar C LAK 12 9 3 1455 Leon Draisaitl C EDM 16 8 8 251
Vincent Trocheck C FLA 8 5 3 14.02 John Klingberg D DAL 10 9 1 2.46
Tomas Hertl C SIS 12 8 4 1397 Esa Lindell D DAL 3 | ) 2.29
John Tavares C TOR 12 3 9 1392 Connor McDavid C EDM 18 11 7 223
Tyler Seguin C DAL 18 12 6 1371 Tomas Hertl C SIS 12 8 4 1.93
Leon Draisaitl C EDM 16 8 8 13.16 Miro Heiskanen D DAL 5 3 2 1.86
Aleksander Barkov C FLA 19 14 5 12,63 Elias Pettersson C VAN 8 6 2 1.79
Sean Couturier C PHI 11 6 5 1262 Tyler Seguin C DAL 18 12 6 1.78
Nathan MacKinnon C COL 12 6 6 1248 Roope Hintz LW DAL 11 7 4 1.77
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Question and Answering (Q&A)




